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Summary. Symmetric orthogonalisation is favourable to perform in momentum 
space, as this article will show. We have used a model of a body centered cubic 
lattice with ls- and 2s-Slater orbitals centered at each atom site. Computer 
programs have been written to calculate the eigenvalues of the overlap matrix 
which play an important role in constructing symmetrically orthogonalised 
wavefunctions. 
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1 Introduction 

Symmetric orthogonalisation [SO] was first introduced by Löwdin in 1947 [1] in 
his work on cohesive and elastic properties of ionic crystals. Subsequent work is 
summafised in a survey article from 1970 [2]. 

SO is particularly advantageous for solids, or in general for extended 
systems, as it treats all unit cells "democratically". Although it was originally 
developed for ionic crystals, where the overlap integrals are small, it is capable 
of handling also systems with large overlap integrals like those occurring in 
metals [3-6]. 

For molecules SO is a standard procedure, implicitly or explicitly, in all 
methods using basic functions of atomic orbital type. For solids other types of 
basis functions have so far been dominating, even though SO is implicitly at the 
basis of several methods. As shown in the reference cited, powerful methods exist 
for the implementation of SO in extended systems. The resulting orthogonalised 
atomic orbitals [OAO] are however many centered functions which makes them 
less attractive to work with explicitly. An alternative representation is provided 
by working in momentum space. By introducing the concept of reciprocal space, 
which is closely related to but not idenfical to momentum space [7, 8], difficult 
numerical problems that occur in position space can be avoided [9]. 

Even though OAO's are not calculated explicitly in methods like PPP or of 
"NDO" type they consfitute the conceptual basis for all semiempirical procedures 
of that kind. This has been known for a long time, but it is nevertheless interesting 
to notice the recent histofical paper by Parr [10] in which a handwritten letter 
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from Löwdin is reproduced. More about the justification of the "zero differential 
overlap" approximation can be found in a survey paper by Fischer-Hjalmars [ 11] 
as well as in papers quoted in [10]. In solid state theory the Hubbard model [12] 
plays an extremely important part and since it constitutes a special case of the 
PPP model [13] the aspects of SO discussed in the present paper should be of 
interest also for the Hubbard model. 

SO of a set of AO's can be regarded as a kind of "renormalisation" of their 
counterparts in momentum space [9]. All that is required are the eigenvalues d(k) 
of the overlap matrix in the first Briltouin zone [BZ]. In order to make SO really 
attractive we thus need a simple and powerful procedure for calculating these 
eigenvalues from the AO's. In the present paper we study the merits and/or the 
disadvantages of two procedures developed for that purpose. The traditional one 
uses the explicit overlap integrals of the AO's and works entirely in position 
space. The other one works in momentum space and uses only the values of the 
momentum space counterparts of the AO's. As detailed below we study primar- 
ily convergence questions and some practical computational problems. The 
eigenvalues of the overlap matrix play an important role, particularly the 
smallest one of them, in its capacity as a measure of linear dependence [14]. A 
numerical study for related problems has been published [15]. In the present 
paper we will introduce an alternative procedure for calculating the eigenvalues 
of the overlap matrix, based either on expansions in momentum space or on 
combinations of expansions in momentum space and in position space. 

As an introduction we will discuss the relevant parts of reference [9]. This 
section is general, but in the proceeding section, named "Numerical studies", we 
will specialise first to a one-dimensional lattice, part A, and then to a three- 
dimensional lattice, part B. The one-dimensional case is probably more penetra- 
ble to the reader than the three-dimensional one and is included for pedagogical 
reasoias. The alm of the article is however introduced in part B where we treat 
a three-dimensional lattice with two Slater orbitals. All through the article we 
have treated the problem in position space in parallel with the problem in 
momentum space. 

2 Eigenvalues of the overlap matrix 

We start out with a brief review of the relevant parts of Ref. [9] to which the 
reader is referred for additional information. An orbital ~b(r) in position space 
and its counterpart q~(p) in momentum space are connected by means of Fourier 
transforms: 

(O(p) - ~ dr ~o(r) e '*"~ (1) 

*(r) -- ~~3 f a, 60,) e"'r (2) 

This implies that the overlap integral in position space is identical to its 
counterpart in momentum space: 
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For  an orbital that is localised in position space we use either one of the 
notations: 

~b(m, r) = ~b(r - m) (4) 

where m is a direct lattice vector which also labels the unit cells. The momentum 
space counterpart of Eq. (4) is: 

B(m,p) = ~(p) e - * ' m  with ~(p) = ~(0,p)  (5) 

Equation (5) illustrates how a translation in direct space simply becomes a phase 
factor in momentum space. A typical LCAO overlap integral can then be 
expressed in two equivalent ways: 

A(m, n) = C «v (~*(m, r)c~(n, r)= _[" dp [q~(p)I 2 e ip'("-') (6) 

These overlap integrals together form an overlap matrix A. If  the orbitals of Eq. 
(4) satisfy periodic boundary conditions in the sense that ~(m + Ga» r)= 
q~(m, r), that matrix is cyclic. Here a; is any of  the three basis vectors of the direct 
lattice and G is the number of  such vectors in each direction which determine the 
B o r n - K a r m a n  region. We also write G3=  N. A is therefore diagonalised by the 
unitary matrix U with elements: 

1 U(m, k) -- - -  e ic ' "  (7) 

where k is a wave vector in BZ and N is the number of  unit cells in the 
B o r n - K a r m a n  region [BK]. Consequently the matrix: 

d = U*A U (8) 

with elements: 
B K  B K  

d(k) = Z U*(k, m)A(m, n)U(n, k) = Z A(m, 0) e ic ' "  (9) 
m , n  m 

is diagonal and these diagonal elements are the eigenvalues of A. Working in 
momentum space we get the alternative expression: 

8x 3 
d(t,) = ~o~ ~ I~(t' + z°l~ (10) 

where Vo~ is the volume of  the unit cell in the direct lattice and the sum is carried 
out over all reciprocal lattice vectors K. With one orbital ~b(r) per unit cetl the 
symmetrically orthonormalised counterpart in momentum space is: 

00~) - av / - j~  (11) 

where k is that wave vector in BZ which is equivalent to p, i.e. is related to p via 
a reciprocal lattice vector K: 

p = k  + K  (12) 

If  each unit cell contains several orbitals ~i (r) i = 1, 2, 3 . . .  we need for each 
k in BZ the matrix D(k) with elements: 

d~/(k) (13) 
D°(k) x/a~~(k)4j(k ) 
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in order to construct completely orthonormal orbitals. Here: 

dij(k) = Z Aü(m,  O) e - i k " n -  8X3 ~x q~*(k + K)~ßj(k + K (14) 
m V0a 

and A«j is a block of the full overlap matrix corresponding to orbitals of  type i 
and j respectively, in all the unit cells. Throughout  the present paper we work 
primarily with a finite B o r n - K a r m a n  region. Occasionally it will be advanta- 
geous, however, to go to the limit of  an infinite BK. 

3 Numerical  studies 

3 . 1 0 n e - d i m e n s i o n a l  latt ice 

We first apply the formalism described in the previous section to a linear (cyclic) 
chain of  atoms with N a  as the length of the B o r n - K a r m a n  region. BZ is then in 
the interval: 

7"C 7~ 
- -  ~< k < -  (15) 

a a 

and the direct lattice vectors are labeled as follows: 

N N 
m = #aez - ~- ~</~ < ~ (16) 

We place a ls Slater orbital: 

1 
qS(r) = ~ e r (17) 

on each a tom and proceed to calculate the eigenvalues of  the corresponding 
overlap matrix A with the elements: 

A u = A(0, m) = e-lula[1 + I~la + ½(#a) 2] (18) 

In direct space we get for the eigenvalues d(k )  of A according to Eq. (9): 

3 [ / 2  

d ( k )  = 1 + 2 }" A u cos(ak#) (19) 
u = l  

In this particular case of  the sum of Eq. (19) with A u from Eq. (18) can be 
summed in closed form. To see that we start out from the geometric progression: 

N/2 1 --  e - Na/2 1 
lim ~ e - U a =  lim (20) 

N - - *  oo U = 1 N - ~  oo e a - -  1 e a -- 1 

Differentiating this with respect to a we get: 

N / 2  e a 

# e-U" -- _ _  (21) 
I 2 = 1 ( ea -- 1) 2 

N / 2  e«(e ~ + 1) 
#2 e-ua _ (22) 

# =  1 ( e a  - -  1) 3 
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This gives for k = 0 the closed expression: 

Fa 2 e ' ( e ' + l ) +  a e Œ + - - ' 1  7 
d(O) 1 + 2 (23) 

L 3 (e a - 1) 3 (e a - -  1) 2 e Œ - l J  

One can proceed in a similar way to get the eigenvalues for other special 
values of  k. The general result for an arbitrary k can be obtained from sums 
similar to Eqs. (20) (22) from complex values of  a: 

2(e a cos(ak) - 1) 2a e~(e 2a cos(ak) + cos(ak) - 2e a) 
d(k)  = 1 + + 

e 2a - 2e a cos(ak) + 1 ( e  2a --  2e" cos(ak) + 1) 2 

2a 2 e°((e 4a , 1) cos(ak) + ea(22" - 1) cos(2ak) - 3ea(e 2a - 1)) 
+ (24) 

3(e 2a - 2e a cos(ak) + 1) 3 

For  checking purposes we notice the following values obtained from Eq. (24). 

Tab~ 1 

k a = 1 a = 2 a ~ o o  

0 5.333496 2.670909 1 
~ /a  0.008322 0.128387 1 

We compare these numbers with the results of  partial sums of  Eq. (19) for finite 
values of  N: 

Table 2 

N k a = l  a = 2  N k a = l  a = 2  

2 0 2.71676 2.17290 2 
4 0 3.88966 2.55143 4 
6 0 4.58668 2.64564 6 
8 0 4.96522 2.66596 8 

10 0 5.15838 2.66995 10 
12 0 5.25258 2.67068 12 
14 0 5.29696 2.67081 14 
16 0 5.31728 2.67083 16 
18 0 5.32640 2.67084 18 
20 0 5.33040 2.67084 20 
22 0 5.33218 2.67084 22 
24 0 5.33292 2.67084 24 

rc /a 

~/a 
n /a  

n /a  

7~ la 
la 
la 

7~ la 

7c la 

7c la 
7c la 
7~ la 

--0.71676 -0.17290 
0.45614 0.20563 

-0.24088 0.11142 
0.13766 0.13175 

--0.05550 0.12776 
0.03870 0.12849 

--0.00568 0.12836 
0.01464 0.12838 
0.00552 0.12838 
0.00952 0.12838 
0.00744 0.12838 
0.00848 0.12838 

In momentum space we cannot use Eq. (10) since we have imposed periodic 
boundary conditions only in one dimension (z). Momentum spaee is therefore 
discretised only in the Pz direction, i.e. momentum space functions are different 
from zero only for: 

2~v 
Pz N a  v = 0 , + l , _ _ _ 2 . . .  (25) 
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The Fourier transform of Eq. (17) is: 

= V/8  1 (26) 
(p2  "4- 1) 2 

so that Eq. (10) becomes: 

NI2-- 1 f 
« ( k ) =  ~_N/2 e-ik~~ «plq~(p)[Zeipz~'a= 16 ~ 1 2 3  (27) 

In Table 3 we show the '"convergence rate" of this formula for.the same values 
of a and k as in Tables 1 and 2. As can be expected the momentum space sum 
converges more rapidly than the one in position space, particularly for a -- 1. 

Table 3 

N k a = l  a = 2  

1 0 5 . 3 3 3 3 3 3  2.666667 
3 0 5 . 3 3 3 4 9 4  2.670819 
5 0 5 . 3 3 3 4 9 7  2.670900 
7 0 5 . 3 3 3 4 9 7  2.670907 
9 0 5 . 3 3 3 4 9 7  2.670908 
2 ~/a 0 . 0 0 9 3 0 6  0.127934 
4 ~/a 0 .008321  0.128360 
6 ~/a 0 .008321  0.128382 
8 ~/a 0 .008321  0.128385 

10 ~/a 0 .008321  0.128386 

3.2 Three-dimensional lattice 

We then go to a three-dimensional solid with a body centered cubic (bcc) lattice. 
With a lattice constant (cube edge) of  a the bec lattice is characterised by the 
following lattice point: 

a ~ -~(2k, 21,2m) and (2k+l ,21+l ,2m+l)  k,l,m=O,+_l,+_2... (28) 

The unit cell volume Voa is a3/2. The properties of the neighbours up to order 
eight are summarised in Table 4 and Fig. 1. Thus inclusion of  all neighbours up 
to order eight in a lattice sum corresponds to 112 neighbours. 

® Q 

X .)J .Y 
t 

o 
/ / 

/ / / / 

0 O:~.h order 

0 1:th order 

0 2rad order 

• 3:d order 

Fig. 1 
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Table 4 

Coordinates Order Distance No. of  
a /2 a neighbours 

0 0 1 
i l ,  +1 ,  i l )  1 ~ / 2  8 
___2, 0, 0) 2 1 6 
_+2, __+2,0) 3 ~ 2  12 
_+3, i l ,  _+1) 4 ~_11/2 24 
__+2, +2 ,  _+2) 5 , ~  8 
_+4, O, O) 6 2 6 
_+3, _+3, __+1) 7 x/~_19/2 24 

(-t-4, _+ 2, O) 8 ~ 24 

In general overlap integrals of  the type of  Eq. (6) depend both on the relative 
direction of  m and n on the distance I m -  ù1. Here we will limit ourselves to 
s-orbitals to that A(m, n) will depend only on the distance I m - ù I. Lattice sttms 
of  the type (9) or (I0) can then be written as follows: 

B K  

d(k )  = ~ A(m,  O) e i t , . ,  = A(mo,  O) e ° + A ( m l ,  O) ~ e - i t ' " ~  
m r a  1 

+ A(m2,  O) ~ e - ~ « " 2  + . . . .  A ( m o ,  O)fo + A ( m l ,  1)f l  + A(m2,  O ) f 2 . . .  

"~ (29) 

Here Ag (me 0) is the overlap integral between two neighbours of  order i and the 
sum over mi is carried out over the neighbours of  order i (last column in Table 
4). The k-dependence is concentrated to the functions f.(k) which are shown in 
Table 5 for the neighbours up to order eight. 

Table 5 

fo(k) = 1 
akx aky ak z 

f l  (k) = 8 cos - -  cos - -  cos - -  
2 2 2 

f2(k) = 2[cos akx + cos aky + cos akz] 

f3(k) = 4[cos akx cos aky + cos aky cos ak z + cos ak z cos akt] 

[ ak x 3aky akz 3ak x aky akz] 
akx cos aky cos 3ak~ + cos ~ -  cos 2 cos ~ -  + cos 2 cos - -  cos - T l  B(«)  = 8 cos - ~ -  2 2 2 

fs(k) = 8 cos ak:, cos aky cos ak~ 

f6(k) = 2[cos 2ak x + cos 2aky + cos 2akz] 

I- 3akx . 3ak -] 
oos - 5 -  cos - y  + oos ~ -  oos 2 cos ] fT(k) = 8[cos ~ 3aky akz 3ak x ak. 3ak z ak x 3ak,, ~ -  + cos ~-- cos 2 cos z z 

B(k)  = 4[cos 2akx cos aky + cos ak x cos 2aky + cos 2aky cos akz 

+ cos aky cos 2ak~ + cos 2ak z cos akt + cos akz cos 2akx] 
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In order to work in momentum space we also need the characteristics of the 
face centered cubic (fcc) lattice, which is the reciprocal of the bcc lattice. For  the 
neighbours up to order eight this is summarised in Table 6 and in Fig. 2. Thus 
inclusion of all reeiprocal lattice vectors up to order eight côrresponds to 140 
terms. 

Table 6. Fcc lattice 

Coordinates Order Distance No. of 
1/ a 1/ a neighbours 

(0, 0, 0) 0 0 1 
( i l ,  i l , 0 )  1 ~ 12 
(+2,0 ,0)  2 2 6 
(+_2, +1, i l )  3 ~_6 24 
(-t-2, __.2,0) 4 ~_8 12 
(+3,  _1,0) 5 ~ 24 
(__+2, _2, _+2) 6 ~ 2  8 
(-t-3, _+Z, i l )  7 ~ , ~  48 
(_+4,0,0) 8 4 6 

The material so far is common for all kinds of orbitals of  s-type. We now test 
the formalism for ls and 2s orbitals of Slater type: 

1 
~b(r)l s = - -  e - r  • (30) 

1 
~b(r)2s 4 x / / ~  r e - r n  (31) 

The overlap integrals corresponding to a distance m a  are [16]: 

A ( l s ,  ls) = e-ma[1 + ma -I- 1(ma)2] (32) 

A( 2s, 2s) = e -ma  [ l + ma  + 4(ma)2 + ~(ma)3 + l (ma) 4] (33) 

1 1 4 
A(ls, 2s) = ~ ~ m a  (1 + t)3/2(l --  t)5n[A3Bo - A 2 B  1 --  A IB2  + AoB3] (34) 

where 

k+ 1 k!  ma  
A k ( s ) = e  ~ ~ s , ( k _ #  + l ) !  s = - -  (35) 

#=1 2 

A 

° I_/" 

o 

O:~& order 

l:st, order 

2:ad order 

3:d order 

4:th order 

Fig. 2 
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and 
k+l k! k+l  e -s'  ~ ( -  1)k-"k! 

Bk(S) = --e -s' ~ (st)ù( k It + 1)T ( s t ~ 7 - f i  + 1)] (36) 
B = l  - -  • # = 1  

where t =½. As pointed out in [16] the quantities Ak and B k are preferably 
calculated by means of recursion formulae. For m = 0 Eq. (35) is not valid. 
Direct calculation gives: 

f 32 1 (37) dr ¢*s(r)¢2,(r) = 2~ x/~ 

The Fourier transforms of the orbitals of Eqs. (30) and (31) are: 

1 (38) 
~ls(P) = (p2 _~_ 1)2 

B2s(P)- 1 1 (3_p2) (39) 
2 , f i -  (¼ +p2)3  

That gives directly for the quantities of Eqs. (10) and (14): 

128n 1 
dl,(k) = 7 -  ~ (1 + (k +/02)4 (40) 

4n (3 -- (k -'~ / 0  2) 2 
d22(«) = ~a3 ~K (¼ ~ (k -]-/02)6 (41) 

and 

V/•8" _ (3 - (k + / 0  2) 
dl2(k) = ä3)-'~K ((k + / 0 2 +  1)2(¼ + (k + / 0 2 ) 3  (42) 

4 Results and discussion 

Six different computer programs have been written. Three types of orbitals have 
been considered, both in position space and momentum space. For a lattice with 
ls orbitals only, the eigenvalues in position space are given by Eqs. (29) and 
(32), whereas the corresponding expression in momentum space is given by Eq. 
(40). For a lattice with 2s orbitals only, we use instead Eqs. (29) and (33) in 
position space and Eq. (41) in momentum space. If  there are both ls and 2s 
orbitals we need Eqs. (29) and (34) in position space and Eq. (42) in momentum 
space, in order to calculate the matrix elements d12(k). Together with d11(k) and 
d=(k) these form a 2 x 2 matrix D(k) defined in Eq. (13). That matrix raised to 
the power ( - 1/2) provides the quantities needed for a complete orthonormalisa- 
tion in the case when there are both ls and 2s orbitals on each atom in the 
lattice. 

In Tables 7-9  we show some results for different lattice constants a and 
different values of k. For each value of a and k we show cumulative lattice sums, 
Eqs. (29) and (40), (41) or (42), respectively, for an increasing number of 
neighbours. In all cases neighbours up to order eight have been included. 

For small values of the lattice constant the sum in momentum space 
converges extremely quickly, whereas the sum in position space definitely needs 
neighbours of much higher order than eight in order to converge. For intermedi- 
ate values of the lattice constant - interrnediate being different for different types 
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Order of Position Momentum Order of Position Momentum 
terms space space terms space space 

kx, ky, k~=O a = l  kx, ky, k~=O a = 2  

0 1.00000 402.12386 0 1.00000 50.26548 
1 8.12034 402.12399 1 6.28223 50.26875 
2 13.27065 402.12399 2 9.80095 50.26886 
3 22.25882 402.12399 3 14.40772 50.26895 
4 38.60020 402.12399 4 21.35798 50.26896 
5 43.88243 402.12399 5 23.47747 50.26897 
6 47.40115 402.12399 6 24.61304 50.26898 
7 60.32968 402.12399 7 28.20278 50.26899 
8 72.90554 402.12399 8 31.53062 50.26899 

k«,ky, kz=O a = 5  kx, ky, k~=O a = 1 0  

0 1.00000 3.21699 0 1.00000 0.40212 
1 2.21970 3.34611 1 1.04806 0.87261 
2 2.79916 3.35284 2 1.06014 0.92714 
3 3.05129 3.35926 3 1.06085 1.00208 
4 3.24502 3.36037 4 1.06101 1.01822 
5 3.29308 3.36134 5 1.06104 1.03432 
6 3.30516 3.36151 6 1.06104 1.03729 
7 3.32803 3.36205 7 1.06105 1.04793 
8 3.34605 3.36209 8 1.06105 1.04877 

k«,ky, kz=O a = 2 0  kx, ky, k~=O a = 3 0  

0 1.00000 0.05027 0 1.00000 0.01489 
1 1.00003 0.34370 1 1.00000 0.14256 
2 1.00003 0.42338 2 1.00000 0.18937 
3 1.00003 0.61111 3 1.00000 0.32976 
4 1.00003 0.66992 4 1.00000 0.38342 
5 1.00003 0.74731 5 1.00000 0.46687 
6 1.00003 0.76498 6 1.00000 0.48882 
7 1.00003 0.83996 7 1.00000 0.59413 
8 1.00003 0.84577 8 1.00000 0.60479 

o f  o r b i t a l s -  b o t h  t he  m o m e n t u m  a n d  p o s i t i o n  s p a c e  e x p r e s s i o n s  c o n v e r g e  
r e l a t i ve ly  q u i c k l y  to  t he  s a m e  resu l t .  F o r  v e r y  l a rge  v a l u e s  o f  t h e  l a t t i ce  c o n s t a n t ,  
w h e r e  t h e  e i g e n v a l u e s  s h o u l d  a p p r o a c h  t he  v a l u e  one ,  t h e  p o s i t i o n  s p a c e  s u m  
c o n v e r g e s  v e r y  r a p i d l y  w h e r e a s  t he  m o m e n t u m  space  n e e d s  m o r e  n e i g h b o u r s  
t h a n  u p  to  o r d e r  e ight .  

T h e s e  r e su l t s  w e r e  to  b e  e x p e c t e d  a n d  i t  s h o u l d  b e  p o s s i b l e  t o  u s e  t h e m  in  a 
s y s t e m a t i c  way .  By  i n c r e a s i n g  t he  l a t t i ce  c o n s t a n t  o n e  f inds  a c r i t i ca l  v a l u e  a« 
s u c h  t h a t  fo r  a > ac t h e  p o s i t i o n  space  s u m  c o n v e r g e s  m o r e  r a p i d l y  t h a n  t h e  o n e  
in  m o m e n t u m  space ,  w h e r e a s  t he  r eve r se  r e su l t  is t r u e  fo r  a < a«. S u i t a b l e  
c o m b i n a t i o n s  o f  p o s i t i o n  a n d  m o m e n t u m  s u m s  c a n  a l so  b e  e n v i s a g e d .  
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485 

Order of Position Momentum Order of Position Momentum 
terrns space space terms space space 

kx=O.5ky, kz=O a = l  kx=O.5ky, kz=O a = 2  

0 1.00000 67.02064 0 1.00000 8.37758 
1 8.67213 67.02065 1 7.74480 8.37762 
2 14.34934 67.02065 2 12.56280 8.37762 
3 25.07686 67.02065 3 20.06175 8.37762 
4 45.66097 67.02065 4 32.73501 8.37762 
5 52.40578 67.02065 5 36.43838 8.37762 
6 57.22377 67.02065 6 39.02012 8.37762 
7 75.49872 67.02065 7 45.42135 8.37762 
8 93.60716 67.02065 8 52.39577 8.37762 

kx = O.5ky, kz = O a = 5  kx=O.5ky, kz=O a = l O  

0 1.00000 0.53616 0 1.00000 0.06702 
1 2.98686 0.53808 1 - 1.57340 0.09061 
2 4.73497 0.53818 2 -0.19198 0.09129 
3 3.43792 0.53827 3 0.47431 0.09221 
4 2.78209 0.53829 4 -0.04989 0.09245 
5 0.20869 0.53830 5 0.04458 0.09271 
6 1.59012 0.53830 6 0.08556 0.09275 
7 -1.02004 0.53831 7 0.07722 0.09291 
8 -0.13219 0.53831 8 0.10551 0.09293 

k x = 0.5ky, k z = 0 a = 20 k x = 0.5ky, k z = 0 a = 30 

0 1.00000 0.00838 0 1.00000 0.00248 
1 1.09447 0.26154 I 1.00611 0.08699 
2 1.13545 1.04863 2 1.00733 0.38818 
3 1.13289 1.11013 3 1.00733 0.55690 
4 1.13267 1.11307 4 1.00733 0.58722 
5 1.13212 1.12993 5 1.00733 0.91851 
6 1.13217 1.12996 6 1.00733 0.92043 
7 1.13214 1.13026 7 1.00733 0.94651 
8 1.13215 1.13034 8 1.00733 0.97346 

E q u a t i o n  (10)  a n d  i ts  spec ia l  cases ,  Eqs .  (40) ,  (41)  a n d  (42) ,  m e a n s  t h a t  we 
s u m  the  s q u a r e s  o f  t h e  a b s o l u t e  v a l u e s  o f  t h e  F o u r i e r  c o m p o n e n t s  o f  t h e  o r b i t a l  
i n  m o m e n t u m  space .  F o r  a g i v e n  a r g u m e n t  k o f  t h e  e i g e n v a l u e  o f  d(k)  we n e e d  
t he  v a l u e s  o f  t he se  F o u r i e r  c o m p o n e n t s  a t  p o i n t s  d i f f e r ing  f r o m  k b y  a r e c i p r o c a l  
l a t t i ce  v e c t o r  K. I f  t he  r e c i p r o c a l  l a t t i ce  c o n s t a n t  is suf f ic ien t ly  l a rge  t h e  F o u r i e r  
c o m p o n e n t  a t  t he  n e a r e s t  n e i g h b o u r  is so  s m a l l  t h a t  i ts  c o n t r i b u t i o n  to  t h e  s u m  
v a n i s h e s .  W h e n  d i s c u s s i n g  t h e s e  m a t t e r s  o n e  m u s t  b e a r  in  m i n d  b o t h  t h e  
l o c a l i s a t i o n  p r o p e r t i e s  o f  t h e  o r b i t a l s  as  s u c h  a n d  t h e i r  l o c a l i s a t i o n  - in  p o s i t i o n  
a n d  in  m o m e n t u m  s p a c e -  r e l a t i ve  to  t h e  l a t t i ce  u n d e r  c o n s i d e r a t i o n .  A l s  
o r b i t a l  is de f in ie t ly  l o c a l i s e d  in  p o s i t i o n  space ,  w h i c h  i mp l i e s  t h a t  i ts  m o m e n t u m  
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Table 9. ls2s d12(k ) 

A. Pohl and J.-L. Calais 

Order of  Position Momentum Order of  Position Momentum 
terms space space terms space space 

kx, ky=O.5, k~=O a = l  kx, ky=O.5, k z=Oa=2  

0 0.48385 10.80930 0 0.48385 1.35116 
1 4.10719 10.80930 1 3.37796 1.35074 
2 6.76057 10.80930 2 5.30059 1.35073 
3 11.57304 10.80930 3 7.64373 1.35072 
4 20.46268 10.80930 4 10.50037 1.35072 
5 23.35679 10.80930 5 11.41176 1.35072 
6 25.27942 10.80930 6 11.53099 1.35072 
7 32.40221 10.80930 7 11.87317 1.35072 
8 39.26953 10.80930 8 11.61265 1.35071 

kx,ky =0.5 ,  k z = 0  a = 5  kx, ky =0.5 ,  k z = 0  a = 10 

0 0.48385 0.08647 0 0.48385 0.01081 
1 0.74883 0.06330 1 0.98621 1.23086 
2 0.40258 0.06217 2 1.17752 1.22825 
3 -0.22581 0.06117 3 1.20926 1.21847 
4 -0 .59627 0.06101 4 1.21233 1.21557 
5 -0 .09392  0.06088 5 1.21433 1.21258 
6 0.09739 0.06085 6 1.21304 1.21201 
7 0.15202 0.06079 7 1.21143 1.21002 
8 --0.08258 0.06078 8 1.20915 1.20988 

kx, ky=0.5, k z = 0  a = 2 0  kx, ky =0 .5 ,  k z = 0  a = 3 0  

0 0.48385 0.00135 0 0.48385 0.00040 
1 0.48594 0.11035 1 0.48392 0.01420 
2 0.48456 0.13231 2 0.48391 0.02151 
3 0.48446 0.28026 3 0.48391 0.07619 
4 0.48446 0.43277 4 0.48391 0.13877 
5 0.48446 0.26657 5 0.48391 0.18557 
6 0.48446 0.47137 6 0.48391 0.19964 
7 0.48446 0.49970 7 0.48391 0.32733 
8 0.48446 0.49937 8 0.48391 0.32992 

space counterpart is delocalised. When the direct lattice constant is small, the 
reciprocal lattice constant is  large. Thus even though the momentum space ls  
orbital is delocalised, the values of it which are needed for the function d(k) are 
to be calculated at such large values of its argument, that those values decrease 
very rapidly. If on the other hand the direct lattice constant is very large, the 
reciprocal lattice constant is very small, and the Fourier components of  the 
delocalised function then decay very slowly. 

Aissing and Monkhorst [ 17] have pointed out that the speed of the conver- 
gence of the overlap integral of  Eq. (14) is related to the degree of linear 
dependence of the underlying sets of functions. 
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